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Abstract

The damage assessment in a structure consists of the estimation of its location and extent. The objective
of this work is to assess the damage size using the ratio of the incident wave toward and the reflected wave
from the damage. Since waves to be analyzed are of the bending type, the measured signals are highly
dispersive; it is almost impossible to estimate the magnitude ratio alone in the time domain. So, we propose
to use the continuous wavelet transform of the measured signal and perform the ridge analysis in order to
extract accurately the magnitudes of the incident and the reflected waves for a range of frequencies of
interest from the measured wave signal. Wave experiments are conduced in a slender cylindrical beam and
the magnetostrictive sensors are used to capture the bending waves in the beam. To correlate the magnitude
ratio with the damage size, we employ the Timoshenko beam theory. Several experiments are conducted to
check the effectiveness of the proposed wavelet-based method.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The damage estimation problem has been a popular subject for various reasons [1–3]. In this
work, we will be mainly concerned with the damage size estimation using guided bending waves
propagating in a long cylindrical beam. Though common damage detection methods using guided
see front matter r 2005 Elsevier Ltd. All rights reserved.
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waves are usually based on longitudinal or torsional waves as they are less dispersive, there are
some situations where bending waves are primary energy carriers. Quite often, bending waves in
addition to longitudinal waves are reflected from a crack even if only longitudinal waves are
incident. In this case, the additional analysis of bending waves will definitely enhance the accuracy
of damage estimation.
Our goal in this work is to correlate the damage size and the ratio of the bending wave

reflected from and the incident wave into a crack, where the ratio is estimated by the continuous
wavelet transform of the measured signal. The continuous wavelet transform [4] has been
successfully used in various applications [5–10] including the damping identification [5] and
damage detection [9].
As far as the CWT application in damage detection is concerned, CWT has been mainly

used for damage location estimation, not for damage size estimation. In this work, the ridge
in the wavelet-transformed time–frequency plane is traced to compare the magnitude of the
incident wave and the magnitude of the reflected wave from a crack. The ridge method has
been used and developed in other applications [5], but not in damage size assessment. For
damage size assessment, a theoretical foundation to correlate the damage size and the magnitude
of reflected wave from a crack must be provided. In this work, the CWT-based ridge
method will be applied in the damage detection of a beam, so the one-dimensional Timoshenko
beam theory is employed [11–13]. Although, the use of the three-dimensional elasticity equations
improves the accuracy of the prediction, they are too complicated to use. Even with the simpler
Timoshenko equation, the potential of the CWT-based wavelet ridge method may be effectively
demonstrated.
For wave signal acquisition, magnetostrictive sensors [14–21] were used. The effectiveness of the

magnetostrictive sensor application for bending wave measurement may be found in Kim et al.
[19] and Lee and Kim [21].
2. Mechanics of bending waves in a beam

In this section, we will briefly explain the mechanics involved in the propagation and reflection
of elastic bending waves in a beam. Assuming that the beam is slender, we may use the
Timoshenko beam theory [11] for simplified, yet quite satisfactory analysis.
Fig. 1 illustrates analysis models: a beam with a partial non-symmetric crack and a beam with a

symmetric circumferential crack. Fig. 1 schematically shows incident, reflected and transmitted
waves near a crack. The crack is designated by a small undercut lying between x ¼ 0 and x ¼ d: In
Fig. 1, the symbol A1 denotes the incident bending wave toward the crack. The symbols A2 and A3
represent the traveling waves to the right, and the symbols B2 and B3 represent the evanescent
waves to the right. The symbols C and D denote the propagating and evanescent parts of the
reflected waves to the left, respectively.
In the Timoshenko beam theory, the displacement w and the rotation y of the surface normal

are the field variables, which are illustrated in Fig. 2. The rotation of the middle plane is given by
dw=dx: In the Timoshenko beam theory, the shear strain, which is given by g ¼ dw=dx � y;
is taken into account. To analyze the wave reflection and transmission in the problem shown in
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Fig. 1. One-dimensional model for incident, reflected and transmitted waves in a beam having a crack of length d and

depth h: (a) with partial crack, (b) with circumferential crack.
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Fig. 2. The kinematics of the Timoshenko beam theory.
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Fig. 1, the following form of solution can be used (see, e.g., Doyle [12]):

w1ðx; tÞ ¼ ðA1e
�ik1x þ C1e

ik1x þ D1e
k1xÞeiot,

w2ðx; tÞ ¼ ðA2e
�ik2x þ B2e

�k2x þ C2e
ik2x þ D2e

k2xÞeiot,

w3ðx; tÞ ¼ ðA3e
�ik3x þ B3e

�k3xÞeiot, ð1aÞ
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y1ðx; tÞ ¼ ðĀ1e
�ik1x þ C̄1e

ik1x þ D̄1e
k1xÞeiot,

y2ðx; tÞ ¼ ðĀ2e
�ik2x þ B̄2e

�k2x þ C̄2e
ik2x þ D̄2e

k2xÞeiot,

y3ðx; tÞ ¼ ðĀ3e
�ik3x þ B̄3e

�k3xÞeiot. ð1bÞ

In Eq. (1), w1 and y1 denote the field variables in the beam on the left of the crack, and w2; y2; in
the crack section and w3; y3; in the beam on the right of the crack. The wavenumber is denoted by
k and the angular frequency, by o: The relation between the wavenumber k and frequency o is

k ¼ kLðoÞ or kHðoÞ,

where

k2LðoÞ ¼
1

2

1
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In Eqs. (2a) and (2b), cb; cs; q are defined as

cb ¼

ffiffiffiffi
E

r

s
; cs ¼

ffiffiffiffiffiffiffiffi
KG

r

s
; q ¼

ffiffiffiffi
I

A

r
,

where Young’s modulus, the shear modulus and density are denoted by E, G and r; respectively.
The cross-sectional area and mass moment of inertia are expressed by A and I, and the value of
shear correction factor K is taken to be 0.8.
For frequencies below 30 kHz, which we will be mainly interested in, kH will be purely

imaginary. Therefore, the wavenumber k will be kðoÞ ¼ kLðoÞ for the propagating wave part
ðeþikix; e�ikixÞ; and kðoÞ ¼ jImkHðoÞj for the evanescent wave part (eþkix; e�kix). If necessary, the
axial stress sx can be determined by the following equation:

sx ¼ �Ey
qyðx; tÞ
qx

. (3)

After some analysis, we can show that the following relation holds between the coefficients
ðA;B;C;DÞ and ðĀ; B̄; C̄; D̄Þ of Eq. (1) [12]:

ðGAK1k
2
Þ

Ai

Bi

Ci

Di

8>>><
>>>:

9>>>=
>>>;

¼ ðikGAK1Þ

Āi

B̄i

C̄i

D̄i

8>>>><
>>>>:

9>>>>=
>>>>;

ði ¼ 1; 2; 3Þ; (4)

v1 ¼ v2,

f1 ¼ f2,
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Fig. 3. The theoretical value of jC̄1=Ā1j by the Timoshenko beam theory for varying values of the crack size h.

(diameter D ¼ 10mm; crack length d ¼ 2mm).
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E1I1
qf1
qx

¼ E2I2
qf2
qx

,

�E1I1
q2f1
qx2

� ro2I1f1 ¼ �E2I2
q2f2
qx2

� ro2I2f2. (5)

At the crack boundaries, at x ¼ 0 and x ¼ d; the imposition of the displacement and force
continuities yields the necessary equation to calculate the ratio jC̄1=Ā1j in Eq. (5).
Fig. 3 shows the dependence of jC̄1=Ā1j on the frequency for varying values of the crack size h.

The ratio jC̄1=Ā1j that is calculated theoretically by the Timoshenko beam theory will be denoted
as jC̄1=Ā1jtheory: The frequency dependence of the ratio on the crack size will be used for the crack
size estimation.
3. The measurement technique and experimental setup

3.1. The measurement principle of the magnetostrictive sensor

To measure bending waves in a beam, we use the magnetostrictive sensor. The principle of the
sensor and its application may be found in Refs. [16,22,23]. The main motivation to use the
magnetostrictive sensor is that stress waves can be measured without any direct physical contact.
This non-contact characteristic of the sensor has been favored in many applications. The
underlying principle of the magnetostrictive sensor is based on the Villari effect, which, in the one-
dimension form, can be expressed as

B ¼ msH þ qs, (6)
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Fig. 4. The schematic diagram of the experimental setup.
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where B and H denote magnetic induction and magnetic field strength, respectively. The stress is
denoted by s: Two coefficients ms and q represent the permeability under constant stress and the
Villari effect coefficient, respectively [23,24].
In our experiments, the solenoid coils of the magnetostrictive sensor encircle a circular beam

(see Figs. 4 and 5). If stress is developed where the sensor coils encircle, the variation of the
magnetic state caused by the stress can be measured through the sensor coil as the voltage change
[22,25]:

Vðx; tÞ ¼ �
dF
dt

¼ �N
df
dt
, (7)

where x is the longitudinal location along the beam axis and t denotes time. The symbol F denotes
the total magnetic flux enclosed by the sensor coils and V ðx; tÞ represents the voltage output
between both ends of the coils. The magnetic flux encircled by one turn of the coils is denoted by
f; and the number of the coil turns is N.
Since the magnetic flux is related to the magnetic induction, the output voltage can be written as

V ðx; tÞ ¼ �N
d

dt

Z
A

BdA, (8)

where A denotes the cross-sectional area of the beam. Assuming that the applied magnetic
field strength H is not time-varying, we can find the following equation from Eqs. (6)
and (8):

V ðx; tÞ ¼ �N
q
qt

Z
A

qsdA: (9)

When bending waves propagate in a long slender beam, the stress distribution is given by Eq.
(3). To measure bending waves effectively, the distribution of q about y should be the same as the
stress distribution in Eq. (3). If non-linearity and hysteresis are ignored, the magnetostriction
coefficient q can be expressed as

qðx; yÞ ¼ c ðxÞ þ c ðxÞy þ � � � . (10)
0 1
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Fig. 5. The photo of the installed sensor consisting of the coils and the bias permanent magnets.
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If the stress field is caused by bending and the two-term expression in Eq. (10) is used, the output
voltage V(t) measured by the sensor coils becomes [19]

Vðx; tÞ � NEIc1ðxÞ
q
qt

qy
qx

� �
	 Q

q
qt

qy
qx

� �
, (11)

where I ¼
R

A
y2 dA is the mass moment of inertia of the beam. In the last expression of Eq. (11),

the dependence of Q on x is dropped as the sensing location will be assumed to remain unchanged
during experiments.

3.2. Experimental arrangement

Fig. 4 shows how the magnetostrictive sensor is placed at the measurement point; the sensor
coils will detect the change of the magnetic state induced by the stress wave in a beam cross
section. The experimental configuration setup for a test beam specimen is shown in Fig. 5.
Bending waves in the test beam were generated by the side impact of a small cylindrical bullet. The
bullet was shot by an air gun system that was also used in Lee and Kim [21]. The bending waves
were measured by the solenoidal coils of the magnetostrictive sensor.
The diameter and length of the cylindrical ferromagnetic beam used in this experiment were 10

and 2000mm, respectively. For the present investigations, we considered three cracks having the
depths h ¼ 1:5; 3:0; and4:5mm for the beam in Fig. 1(a) and h ¼ 1:8; 2:8; and4:0mm for the
beam in Fig. 1(b). However, the width of crack was fixed as d ¼ 2mm:
Note that the permanent magnets in Fig. 5 should be arranged so as to make q vary linearly

along the beam cross section. The magnet configuration employed in this work was suggested by
Lee and Kim [21].
The voltage measured by the solenoid sensor was amplified by a preamplifier (Stanford

Research Systems SR560) and captured by a digital oscilloscope (Lecroy 9310M). The sampling
rate was 20Ms/s.
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4. CWT ridge analysis for crack size estimation

In this section, we will present a technique to estimate jC̄1=Ā1j by the continuous wavelet
transform. The ratio jC̄1=Ā1j is the magnitude of the reflected wave to the magnitude of the
incident wave.
To motivate the need for the wavelet transform, we plot the measured signal consisting of the

waves incident to and reflected from a crack (d ¼ 2mm; h ¼ 4:5mm) in Fig. 6. From the time
signal shown in Fig. 6, it is impossible even to distinguish the incident part from the reflected part.
Therefore, time–frequency analysis using the short-time Fourier transform, or the wavelet
transform should be used for damage estimation. Recently, Kim and Kim [9] have shown that
certain bending waves measured in a beam must be analyzed by the wavelet transform in order to
extract the arrival time and the frequency component of the wave signals accurately. Accordingly,
we use the continuous transform based on the Gabor wavelet [4]. After a brief introduction of the
wavelet ridge analysis, we will show how the ridge analysis can be applied to the present beam
bending problem.
4.1. Wavelet ridge analysis

Since wave signals to be measured are highly dispersive, the frequency components arriving at
the measurement point vary rapidly in a short period. Our strategy to estimate Ā1 and C̄1 that are
the frequency-dependent magnitudes of the incident and reflected waves, respectively, is to find
the ridges in the time–frequency plane of the continuous wavelet transform and determine the
magnitudes at the ridges.
Since the continuous Gabor wavelet transform will be employed, it is necessary to explain the

continuous wavelet transform briefly. In analyzing the frequency evolution of a signal using
Fig. 6. The time history of the voltage signal measured by the magnetostrictive sensor in a cracked beam (D ¼ 10mm;
d ¼ 2mm; h ¼ 4:5mm; l ¼ 150mm).
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CWT, one must use analytic wavelets such as the Gabor wavelet that has the smallest Heisenberg
box [4]. The Gabor wavelet is a complex-valued modulated Gaussian function, which is defined as

cðtÞ ¼ gðtÞeiZt, (12)

where the center frequency of the Fourier transforms ĉ is Z and g(t) is a Gaussian function

gðtÞ ¼
1

ðs2pÞ1=4
exp

�t2

2s2

� �
. (13)

It is pointed out in Ref. [9] that the time–frequency characteristics of the Gabor wavelet transform
are controlled by the Gabor shaping factor Gs ¼ sZ: In our applications, the value of Gs ¼ 3:5 will
be used and the validity of using this value will be checked later for the problem in consideration.
To explain the ridge analysis, we assume that a signal V ðtÞ to be analyzed takes the following

form:

V ðtÞ ¼ aðtÞefðtÞ, (14)

where aðtÞ is called the analytic amplitude of V ðtÞ and fðtÞ is the modulating phase. Then the
wavelet transform W V ðu; sÞ of VðtÞ takes the following form:

W V ðu; sÞ ¼

Z þ1

�1

VðtÞ
1ffiffi
s

p c� t � u

s

� �
dt

¼

ffiffi
s

p

2
aðuÞeifðuÞðĝðs½x� f0

ðuÞ�Þ þ �ðu; xÞÞ ð15Þ

with

cu;sðtÞ ¼
1ffiffi
s

p c
t � u

s

� �
.

In Eq. (15), u and s denote the time and scale, and the symbol * denotes the complex conjugate.
The ridge algorithm computes the instantaneous frequencies from the local maxima of

jW V ðu; sÞj: If the following conditions are satisfied [9], the corrective term �ðu; xÞ in Eq. (15) can be
neglected and the use of Eq. (15) can be adjusted for our applications:1

Z5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðuÞjjdfðuÞ=duj

d2a=du2

s
, (16a)

Z5
dfðuÞ=du

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2f=du2

q , (16b)

Z51. (16c)

In Fig. 7, the three conditions corresponding to Eqs. (16a–c) are plotted in the frequency range of
interest (between 5 and 25 kHz). Since all of the three conditions are satisfied for Gs ¼ 3:5; the
CWT-based ridge analysis can be justified for the frequencies of interest.
1The suggestion of an anonymous reviewer to justify the use of Eq. (15) is appreciated.
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Fig. 7. The allowable range of the center frequency Z for CWT for Gs ¼ 3:5:
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Since jĝðoÞj is maximum at o ¼ 0; jW V ðu; sÞj becomes the maximum at x ¼ f0
ðuÞ; where f0

¼

df=du: The locus connecting the points ðu; xÞ that locally maximize jW V ðu; sÞj is called the ridge.
At the ridge point ðu; xðuÞÞ; we have

jW V ðu; sÞj ¼

ffiffi
s

p

2
jaðuÞjjĝðoÞj (17a)

or

jaðuÞj ¼ 2jW V ðu; sÞj=jĝð0Þj. (17b)

Therefore, jaðuÞj; i.e., the magnitude of the signal along the ridge can be determined if jW V ðu; sÞj
along the ridge is known.
In interpretingW V ðu; sÞ; it is often convenient to use the frequency o instead of the scale s using

the relation s � Z=o (Z is the center frequency of the wavelet ĉ). Because there is no danger of
confusion between u and t, we also use t instead of u as

~W V ðt;oÞ ¼ W V ðu; sÞ. (18)
4.2. Continuous Gabor wavelet transform application to bending problems

Now we will show how Eq. (17) is used to estimate jC̄1=Ā1j from the measured signal. For the
subsequent analysis, the wave mechanics is based on the Timoshenko beam theory that is
summarized in Section 2. Since the measured sensor signal VðtÞ in a cracked beam consists of the
contributions ViðtÞ and VrðtÞ from both the incident wave and reflected wave, we write V ðtÞ as

V ðtÞ ¼ ViðtÞ þ VrðtÞ. (19)
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If the sensor location is not very close to either the impact point or the crack, one may neglect
the contribution of the evanescent waves to the measured sensor output voltage VðtÞ as they decay
rapidly.
Using the Timoshenko bending wave model in Eqs. (1b) and (11) for the sensor output, ViðtÞ

and VrðtÞ can be written as

ViðtÞ ¼ Q
q
qt

q
qx

Ā1e
ið�k1xþotÞ

� �
¼ QĀ1k1oeið�k1xþotÞ, ð20aÞ

VrðtÞ ¼ Q
q
qt

q
qx

C̄1e
iðk1xþotÞ

� �
¼ � QC̄1k1oeiðk1xþotÞ. ð20bÞ

Comparing Eqs. (14) and (20), the analytic amplitudes aiðtÞ and arðtÞ of the incident and reflected
parts of the measured signal become

aiðtÞ ¼ Qk1oe�ik1xĀ1, (21a)

arðtÞ ¼ �Qk1oeik1xC̄1. (21b)

Now using Eqs. (17a), (18) and (21), we obtain

j ~W Vr
ðt;oÞjridge

j ~W Vi
ðt;oÞjridge

¼

ffiffiffiffiffiffiffiffiffi
Z=o

p
=2 � jarjjĝð0Þjffiffiffiffiffiffiffiffiffi

Z=o
p

=2 � jaijjĝð0Þj

�
jQk1oe�ik1xj
j � Qk1oeik1xj

jC̄1j

jĀ1j

¼
C̄1

Ā1

����
����. ð22Þ

Therefore, if we determine the magnitudes of j ~W Vr
ðt;oÞj and j ~W Vi

ðt;oÞj along their ridges, the
ratios of jC̄1=Ā1j can be estimated. Since the ratio depends on the damage size, we can extract the
damage size for which the experimentally determined ratio jC̄1=Ā1jexp fits best the theoretical ratio
jC̄1=Ā1jtheory by the Timoshenko beam theory.
Thus, the estimated depth hest is computed by

hest ¼ arg min
h

X
o

C̄1ðoÞ
Ā1ðoÞ

����
����
exp

�
C̄1ðo; hÞ
Ā1ðo; hÞ

����
����
theory

" #2
. (23)

Because jC̄1ðoÞ=Ā1ðoÞj is frequency dependent, we look for hest that minimizes the difference
between jC̄1ðoÞ=Ā1ðoÞjexp and jC̄1ðoÞ=Ā1ðoÞjtheory over a certain frequency range.
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5. Applications

In this section, we will present the results obtained by the CWT ridge technique for the
estimation of jC̄1=Ā1jexp: As an example, we take the continuous Gabor wavelet transform of the
voltage signal V ðtÞ of Fig. 6 and plot j ~W V ðt;oÞj in Fig. 8. (The value of Gs ¼ 3:5 for CWT was
used.) From the three-dimensional plot alone, it is still difficult to tell which part of the plot
corresponds to the incident part ðViÞ or the reflected part ðVrÞ: Therefore, the contour of
j ~W V ðt;oÞj in the time–frequency plane was used. To find the ridges, we searched for the loci of the
local maxima of j ~W V ðt;oÞj:
Before applying CWT, the noise removal of measured signals was done. (We used the function

‘‘wden’’ of Matlab.) The loci are marked in Fig. 9. The patterns of the loci clearly reveal the
dispersive characteristics of the first branch (corresponding to k ¼ kLðoÞ) of the bending waves. It
is difficult to pinpoint the reflected wave part from the direct time signal in Fig. 6, but the ridge
analysis shows the arrival of the wave reflected from the crack. Once the ridges for the incident
and reflected waves are determined, one can find the magnitudes of j ~W Vi

ðtðoÞ;oÞjridge and
j ~W V r

ðtðoÞ;oÞjridge:
Now using Eq. (22), we can estimate the ratios jC̄1=Ā1j and plot them in Fig. 10 for various

values of h’s. The experimental results in Fig. 10 clearly indicate that the magnitude and the
frequency-dependence characteristic of jC̄1=Ā1j vary depending on the values of h’s for the beam
in Fig. 1(a).
To estimate h’s from jC̄1=Ā1jexp; Eq. (23) was used. The results for three cases (h ¼ 1:5; 3.0,

4.5mm) for the beam in Fig. 1(a) are summarized in Table 1. It is worth comparing the frequency
dependencies of jC̄1=Ā1jtheory and jC̄1=Ā1jexp and the comparison is shown in Fig. 11. The analysis
used for the beam in Fig. 1(a) was repeated for the beam in Fig. 1(b). The results are given by
Table 2 and Fig. 12.
When the damage size becomes large, the estimated crack size approaches the true values of h’s.

A relatively large discrepancy between htrue and hestimated mostly for small values of h’s may be
Fig. 8. The three-dimensional plot of j ~W V ðt;oÞj of the signal shown in Fig. 6.
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Fig. 10. The estimated ratios jC̄1=Ā1jexp from the wavelet ridge analysis for the experimentally measured signals.

Table 1

Damage size estimation for the beam shown in Fig. 1(a)

Given (mm) Estimated (mm) Error

1.5 2.2 0.46

3.0 3.4 0.13

4.5 4.3 0.04

Fig. 9. The ridges of j ~W V ðt;oÞj plotted on the two-dimensional contour plot. (The signal V ðtÞ is from Fig. 6.)

I.K. Kim, Y.Y. Kim / Journal of Sound and Vibration 287 (2005) 707–722 719
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Fig. 11. The comparison of jC̄1=Ā1jtheory and jC̄1=Ā1jexp in a partial-cracked beam.

Table 2

Damage size estimation of the beam shown in Fig. 1(b)

Given (mm) Estimated (mm) Error

1.8 1.6 0.11

2.8 3.0 0.07

4.0 3.7 0.08

Fig. 12. The comparison of jC̄1=Ā1jtheory and jC̄1=Ā1jexp in a circumferential-cracked beam.

I.K. Kim, Y.Y. Kim / Journal of Sound and Vibration 287 (2005) 707–722720
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from several sources. The major source appears to come from the incapability of the Timoshenko
beam theory to predict the wave phenomena for small cracks. In order to improve the estimation
accuracy, among others, the three-dimensional elasticity solution should be used.
6. Conclusions

The continuous Gabor wavelet transform was used to estimate the damage size from dispersive
bending waves in a beam. In the time–frequency plane of the continuous wavelet transform, the
magnitudes of the wavelet transform along the ridges of the incident and reflected waves are used
for the damage size estimation. We showed that the ratio of these magnitudes along the two ridges
is the same as the ratio of the magnitude of the incident wave to the magnitude of the reflected
wave. By using the fact that the magnitude and frequency-dependence pattern of the ratio vary
with damage size, we were able to correlate the ratio and the damage size. Except when the
damage size is very small, which would require the use of advanced theories, the correlation was
quite satisfactory.
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